Skip to content

RAGnarok-AI

Local-first RAG evaluation framework for LLM applications

Evaluate, benchmark, and monitor your RAG pipelines — 100% locally, no API keys required.


Why RAGnarok-AI?

Building RAG systems is easy. Knowing if they actually work is hard.

Tool Issue
Giskard Heavy, slow (45-60 min scans), loses progress on crash
RAGAS Requires OpenAI API keys, no local-first option
Manual testing Doesn't scale, not reproducible

RAGnarok-AI solves this with:

  • 100% Local — Runs entirely with Ollama, no data leaves your network
  • Fast & Resilient — Built-in checkpointing, resume on crash
  • Framework Agnostic — Works with LangChain, LangGraph, LlamaIndex
  • CI/CD Ready — CLI-first design, JSON output, exit codes

Quick Example

from ragnarok_ai import evaluate, generate_testset

# Generate test questions from your knowledge base
testset = await generate_testset(
    knowledge_base="./docs/",
    num_questions=50,
    llm="ollama/mistral",
    checkpoint=True,
)

# Evaluate your RAG pipeline
results = await evaluate(
    rag_pipeline=my_rag,
    testset=testset,
    metrics=["retrieval", "faithfulness", "relevance"],
)

# Get actionable insights
results.summary()

Performance

Benchmarked on Apple M2 16GB, Python 3.10:

Retrieval Metrics: ~24,000 queries/sec

Queries Time Peak RAM
50 0.002s 0.02 MB
500 0.021s 0.03 MB
5000 0.217s 0.17 MB

LLM-as-Judge (Prometheus 2):

Criterion Avg Time
Faithfulness ~25s
Relevance ~22s
Hallucination ~28s

Retrieval is pure computation — instant. LLM-as-Judge is the bottleneck (~25s/eval), but runs 100% local.


Key Features

Feature Description
100% Local Ollama-powered, no API keys required
LLM-as-Judge Prometheus 2 evaluation: faithfulness, relevance, hallucination
Cost Tracking Track token usage. Local models = $0.00
Checkpointing Resume on crash, no lost progress
Framework Agnostic LangChain, LangGraph, LlamaIndex, custom RAG
CI/CD Ready CLI-first, JSON output, GitHub Action

Installation

pip install ragnarok-ai

With optional dependencies:

pip install ragnarok-ai[ollama,qdrant]

See Installation for details.


Next Steps