RAGnarok-AI¶
Local-first RAG evaluation framework for LLM applications
Evaluate, benchmark, and monitor your RAG pipelines — 100% locally, no API keys required.
Why RAGnarok-AI?¶
Building RAG systems is easy. Knowing if they actually work is hard.
| Tool | Issue |
|---|---|
| Giskard | Heavy, slow (45-60 min scans), loses progress on crash |
| RAGAS | Requires OpenAI API keys, no local-first option |
| Manual testing | Doesn't scale, not reproducible |
RAGnarok-AI solves this with:
- 100% Local — Runs entirely with Ollama, no data leaves your network
- Fast & Resilient — Built-in checkpointing, resume on crash
- Framework Agnostic — Works with LangChain, LangGraph, LlamaIndex
- CI/CD Ready — CLI-first design, JSON output, exit codes
Quick Example¶
from ragnarok_ai import evaluate, generate_testset
# Generate test questions from your knowledge base
testset = await generate_testset(
knowledge_base="./docs/",
num_questions=50,
llm="ollama/mistral",
checkpoint=True,
)
# Evaluate your RAG pipeline
results = await evaluate(
rag_pipeline=my_rag,
testset=testset,
metrics=["retrieval", "faithfulness", "relevance"],
)
# Get actionable insights
results.summary()
Performance¶
Benchmarked on Apple M2 16GB, Python 3.10:
Retrieval Metrics: ~24,000 queries/sec
| Queries | Time | Peak RAM |
|---|---|---|
| 50 | 0.002s | 0.02 MB |
| 500 | 0.021s | 0.03 MB |
| 5000 | 0.217s | 0.17 MB |
LLM-as-Judge (Prometheus 2):
| Criterion | Avg Time |
|---|---|
| Faithfulness | ~25s |
| Relevance | ~22s |
| Hallucination | ~28s |
Retrieval is pure computation — instant. LLM-as-Judge is the bottleneck (~25s/eval), but runs 100% local.
Key Features¶
| Feature | Description |
|---|---|
| 100% Local | Ollama-powered, no API keys required |
| LLM-as-Judge | Prometheus 2 evaluation: faithfulness, relevance, hallucination |
| Cost Tracking | Track token usage. Local models = $0.00 |
| Checkpointing | Resume on crash, no lost progress |
| Framework Agnostic | LangChain, LangGraph, LlamaIndex, custom RAG |
| CI/CD Ready | CLI-first, JSON output, GitHub Action |
Installation¶
With optional dependencies:
See Installation for details.
Next Steps¶
- Installation — Set up RAGnarok-AI
- Quick Start — Run your first evaluation
- CLI Reference — Command-line interface
- GitHub Action — CI/CD integration